Abstract

The interaction of ligands deemed to be ATP analogues with renal Na(+),K(+)-ATPase suggests that two ATP binding sites coexist on each functional unit. Previous studies in which fluorescein 5-isothiocyanate (FITC) was used to label the high affinity ATP site and 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) was used to probe the low affinity site suggested that the two sites coexist on the same alphabeta protomer. Other studies in which FITC labeled the high affinity site and erythrosin-5-isothiocyanate (ErITC) labeled the low affinity site led to the conclusion that the high and low affinity sites exist on separate interacting protomers in a functional diprotomer. We report here that at 100% inhibition of ATPase activity by FITC, each alphabeta protomer of duck nasal gland enzyme has a single bound FITC. Both TNP-ADP and ErITC interact with FITC-bound protomers, which unambiguously demonstrates that putative high and low affinity ATP sites coexist on the same protomer. In unlabeled nasal gland enzyme, TNP-ADP and ErITC inhibit both ATPase activity and p-nitrophenyl phosphatase activity, functions attributed to the putative high and low affinity ATP site, respectively, by interacting with a single site with characteristics of the high affinity ATP binding site. In FITC-labeled enzyme, TNP-ADP and ErITC inhibit p- nitrophenyl phosphatase activity but at much higher concentrations than with the unmodified enzyme. Low affinity sites do not exist on the unmodified enzyme but can be detected only after the high affinity site is modified by FITC.

Highlights

  • Naϩ,Kϩ-ATPase (EC 3.6.1.3) is the biochemical manifestation of the Naϩ,Kϩ pump, which transports Naϩ out of cells and Kϩ in against an electrochemical gradient using energy obtained from the hydrolysis of ATP

  • The results of studies in which ligand binding abolishes functions attributed to a high affinity ATP binding site, such as Naϩ-dependent ATPase activity and Naϩdependent phosphorylation from ATP, or functions, such as phosphorylation from inorganic phosphate or Kϩ-dependent para-nitrophenyl phosphatase1 activity, of a site at which ATP acts with low apparent affinity have been advanced as evidence for the presence of separate coexisting high and low affinity ATP binding sites in a single enzyme unit (6 – 8)

  • In the nasal gland enzyme, at 100% inhibition of Naϩ,Kϩ-ATPase activity fluorescein 5-isothiocyanate (FITC) must be bound to every ␣␤ protomer, and the residual Kϩ-dependent para-nitrophenyl phosphatase (pNPPase) activity must be a function of FITC-labeled protomers

Read more

Summary

Introduction

Naϩ,Kϩ-ATPase (EC 3.6.1.3) is the biochemical manifestation of the Naϩ,Kϩ pump, which transports Naϩ out of cells and Kϩ in against an electrochemical gradient using energy obtained from the hydrolysis of ATP. TNP-ADP competitively inhibits Naϩ,Kϩ-ATPase and Kϩ-dependent pNPPase of unmodified nasal gland enzyme with about the same affinity.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call