Abstract

MicroRNAs play important roles in cell proliferation, differentiation, and apoptosis, and their expression influences cardiomyocyte apoptosis resulting from ischemia-induced myocardial infarction. Here, we determined the role of miR expression in cardiomyocyte apoptosis during hypoxia and reoxygenation. The rat cardiomyocyte cell line H9c2 was incubated for 3 h in normal or hypoxia medium, followed by reoxygenation for 24 h and transfection with a miR-302 mimic or antagomir. The effect of miR-302 on myeloid leukemia cell-differentiation protein-1 (Mcl-1) expression was determined by western blot, real-time polymerase chain reaction, and luciferase reporter assays, with cell viability assays. We observed that miR-302 expression was elevated by hypoxia/reoxygenation injury and increased further or decreased by transfection of the miR-302 mimic or miR-302 antagomir, respectively. Additionally, elevated miR-302 levels increased apoptosis-related protein levels and cardiomyocyte apoptosis, and luciferase reporter assays revealed miR-302 binding to the Mcl-1 mRNA 3′ untranslated region. Our findings suggested that miR-302 overexpression aggravated hypoxia/reoxygenation-mediated cardiomyocyte apoptosis by inhibiting antiapoptotic Mcl-1 expression, thereby activating proapoptotic molecules. Furthermore, results indicating cardiomyocyte rescue from hypoxia/reoxygenation injury following treatment with miR-302 antagomir suggested that miR-302 inhibition might constitute a therapeutic strategy for protection against cardiomyocyte apoptosis during hypoxia/reoxygenation injury.

Highlights

  • MicroRNAs are a group of noncoding RNAs (~20–25 nucleotides in length) that downregulate mRNA expression through binding to their 3′ untranslated region (3′UTR) [1]

  • Cardiomyocyte apoptosis occurs when cardiac tissue is exposed to a stressor, such as ischemia and/or reperfusion, during myocardial infarction, which is a major cause of morbidity and mortality worldwide [9]

  • Cheng et al [2] reported that miR-21 inhibits cell death under H/R conditions by regulating expression of the programmed cell death 4 (PDCD4) gene, which is targeted by miR-499 [2]

Read more

Summary

Introduction

MicroRNAs (miRs) are a group of noncoding RNAs (~20–25 nucleotides in length) that downregulate mRNA expression through binding to their 3′ untranslated region (3′UTR) [1]. MiRs regulate cell proliferation, differentiation, apoptosis, autophagy, and development by upregulating or downregulating mRNA expression [4,5,6,7,8]. Cheng et al [2] reported that miR-21 inhibits cell death under H/R conditions by regulating expression of the programmed cell death 4 (PDCD4) gene, which is targeted by miR-499 [2] They found that miR-499 mitigates lipopolysaccharide-induced cardiac cell death by inhibiting the translation of PDCD4 and sex-determining region Y- (SRY-) box 6 mRNA [15]. MiR-20a inhibits expression of the apoptotic factor Egl. Oxidative Medicine and Cellular Longevity nine homolog 3 to protect cardiomyocytes from H/R injury [11]. We investigated whether miR-302 binds to the 3′UTR of Mcl-1 mRNA and the effects of that binding activity on protecting H9c2 cardiomyocytes from H/R injury

Materials and Methods
Results
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call