Abstract

Atrogin-1/MAFbx is a major atrophy-related E3 ubiquitin ligase that is expressed specifically in striated muscle. Although the contribution of atrogin-1 to cardiac and muscle hypertrophy/atrophy has been examined extensively, it remains unclear whether atrogin-1 plays an essential role in the simulated ischemia/reperfusion-induced apoptosis of primary cardiomyocytes. Here we showed that atrogin-1 markedly enhanced ischemia/reperfusion-induced apoptosis in cardiomyocytes via activation of JNK signaling. Overexpression of atrogin-1 increased phosphorylation of JNK and c-Jun and decreased phosphorylation of Foxo3a. In addition, atrogin-1 decreased Bcl-2, increased Bax, and enhanced the activation of caspases. Furthermore, JNK inhibitor SP600125 markedly blocked the effect of atrogin-1 on cell apoptosis and the expression of apoptotic-related proteins and caspases. Importantly, atrogin-1 induced sustained activation of JNK through a mechanism that involved degradation of MAPK phosphatase-1 (MKP-1) protein. Atrogin-1 interacted with and triggered MKP-1 for ubiquitin-mediated degradation. In contrast, proteasome inhibitors markedly blocked the degradation of MKP-1. Taken together, these results demonstrate that atrogin-1 promotes degradation of MKP-1 through the ubiquitin-proteasome pathway, thereby leading to persistent activation of JNK signaling and further cardiomyocyte apoptosis following ischemia/reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.