Abstract
1. Whole cell current-clamp recordings show that odors not only depolarize but may also hyperpolarize lobster olfactory receptor cells. Odor-evoked hyperpolarizations occurred in 36% of 178 receptor cells examined. Cell-attached recordings of action potentials followed by current-clamp recordings in the same cell indicate that depolarizing and hyperpolarizing responses were associated with increases (excitation) and decreases (inhibition) in action potential frequency, respectively. Since odorants that hyperpolarized one receptor cell depolarized other cells and since individual cells may be both excited and inhibited, the inhibitory and excitatory nature of the response must be conferred by the odorant-receptor and transduction processes expressed by the receptor cell. 2. The input resistance dropped from 1.73 G omega at rest to 1.45 G omega during odor-evoked hyperpolarization, and the membrane time constant correspondingly decreased from 114 to 61 ms. The increased conductance persisted throughout the stimulation period (5 s). 3. Shifting the K+ reversal to a more negative potential by lowering the [K+]o from 14 to 2.8 mM increased the magnitude of hyperpolarization. The hyperpolarization could be reversibly blocked by dendritic treatment with 5-10 mM 4-aminopyridine (4-AP) or 10 mM cesium ion, but not by 10 mM tetraethylammonium (TEA). 4. Substituting 80% of the [Cl-]o with NO3- increased the amplitude of the hyperpolarization. Based on a calculated equilibrium potential of -32 mV for chloride, an increase in chloride conductance in a low [Cl-]o environment should have decreased the magnitude of the response. Presumably the change in [Cl-]o acts through the dendritic steady-state chloride conductance to shift the membrane potential further from the reversal potential for K+.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have