Abstract
With global warming and increasing eutrophication of water bodies, a variety of algal toxins, including microcystin (MC), released into water by cyanobacterial blooms pose a serious threat to the survival of aquatic organisms. To investigate the mechanism of the Nrf2/Keap1a pathway on resisting MC-induced oxidative stress and apoptosis in Cristata plicata, we cloned the full-length cDNA of CpBcl-2. The cDNA full-length of CpBcl-2 was 760 bp, encoded a 177 amino acid peptide, and contained a highly conserved Bcl-2-like superfamily domain. MC stimulation increased the expression and activity levels of related antioxidant enzymes. After CpNrf2 knockdown, the transcription levels of NAD(P)H quinone redox Enzyme-1 (NQO1) and related antioxidant enzymes activity in the gills and kidney of C. plicata were significantly down-regulated upon MC stress, but that was significantly upregulated after knockdown of CpKeap1a. Additionally, Upon MC stress, the mRNA levels of CpBcl-2 were increased in the gills and kidney after knockdown of CpNrf2 at 24 h, and that of CpBcl-2 were decreased at 72 and 96 h in the CpKeap1a-siRNA+MC group. Moreover, MC stimulation significantly inhibited CpJNK expression in the gills and kidney, but which regulated the Nrf2/Keap1a pathway in C. plicata. However, the JNK inhibitor SP600125 promoted the expression of CpNrf2 and related enzymes with antioxidant response element (ARE-driven enzyme) in the gills and kidney. Then, we speculated that CpKeap1a was a negative regulator of CpNrf2, and C. plicata resisted MC-induced oxidative damage and apoptosis by inhibiting JNK transcription via the Nrf2/Keap1a pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.