Abstract
While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported “compound 52” aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund’s adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.
Highlights
Voltage-gated sodium channels are major drivers of the excitability of sensory neurons, including those encoding noxious inputs
To understand further the mechanism by which aminotriazines produced analgesia, we examined the effects in living rats of compound 52 administered systemically on the response properties of nociceptors sensitized by complete Freund’s adjuvant (CFA)
We extend our previous report of antinociceptive properties for the Nav1.7 inhibitor compound 52 with more compounds, multiple pain assays, and mechanistic studies of neuronal firing in vivo
Summary
Voltage-gated sodium channels are major drivers of the excitability of sensory neurons, including those encoding noxious inputs. Many of the nine individual sodium channel subtypes expressed in the peripheral nervous system have distinct biophysical properties [1], and it is not known what roles these different subtypes might play in the response properties of different neuronal types in vivo [2]. This is true for persistent and chronic pain conditions, in which neurons are hyper-excitable and may encode normally non-noxious stimuli as noxious due to altered gene expression, neuronal connectivity, or second-messenger signaling [3, 4]. Parallel comparison of 1) in vitro selectivity and biophysical properties; 2) effects in models of pain; and 3) effects on the firing of nociceptive neurons can contribute to the understanding of mechanistic roles of different sodium channels and different neuronal fiber types in pain
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have