Abstract
4′,4′-dimethylspiro (5 α-cholestane-3,2′-oxazolidin)-3′-yloxy (IK-1) and 7 α,12 α-dihydroxy-4′,4′-dimethylspiro (5 β-cholan-24-oic-3,2′-oxazolidin)-3′-yloxy acid (IK-2), two stable steroidic nitroxyl radicals, were newly synthesized and tested as possible inhibitors of lipid peroxidation, induced by Fenton's reagent in both rat liver microsomes and egg phosphatidylcholine liposomes. The inhibitory activity, evaluated through the formation of thiobarbituric acid reactive substances (TBARS) and the conjugated diene, was compared with that of α-tocopherol and 2,2,6,6-tetramethylpiperidine-1-yloxy (TEMPO). In each model system IK-1 and IK-2 exhibited an IC 50 of 8 μM and reduced the formation of TBARS and conjugated diene, showing IK-1 a potency comparable to α-tocopherol and higher than TEMPO. Moreover IK-1 and, to a lesser extent IK-2, reduced the lipid peroxidation induced in the microsomes by the water-soluble azo-initiator 2,2′-Azobis (2-methylpropionamidine) dihydrochloride (AMPH), indicating the IK-1 and IK-2 ability as chain-breaking antioxidants. The hydroxylamine 4′,4′-dimethylspiro (5 α-cholestane-3,2′-oxazolidin)-3′-hydroxide (IK-3), obtained by chemical reduction of IK-1, was completely inactive as an inhibitor of lipid peroxidation in heat pre-treated microsomes and in liposomes. However in microsomes it was active since it was oxidized to the corresponding nitroxyl radical IK-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.