Abstract

On the basis of drug interactions with carbamazepine epoxide, it has been hypothesized that valproic acid and valpromide are inhibitors of epoxide hydrolase, but the role of epoxide hydrolase in these interactions has not been clearly established. In this study, therapeutic concentrations of valproic acid (less than 1 mmol/L) and valpromide (less than 10 mumol/L) inhibited hydrolysis of carbamazepine epoxide and styrene oxide in human liver microsomes and in preparations of purified human liver microsomal epoxide hydrolase. Valpromide (KI = 5 mumol/L) was 100 times more potent than valproic acid (KI = 550 mumol/L) as an inhibitor of carbamazepine epoxide hydrolysis in microsomes. After administration of carbamazepine epoxide to volunteers, the transdihydrodiol formation clearance was decreased 20% by valproic acid (blood concentration approximately 113 mumol/L) and 67% by valpromide (blood concentration less than 10 mumol/L). For both valproic acid and valpromide, a striking similarity exists between in vitro and in vivo inhibitory potencies. Valproic acid and valpromide are the first drugs known to inhibit microsomal epoxide hydrolase, an important detoxification enzyme, at therapeutic concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.