Abstract
To examine the effect of hepatitis C virus (HCV) structural mimics of regulatory regions of the genome on HCV replication. HCV RNA structural mimics were constructed and tested in a HCV genotype 1b aBB7 replicon, and a Japanese fulminant hepatitis-1 (JFH-1) HCV genotype 2a infection model. All sequences were computer-predicted to adopt stem-loop structures identical to the corresponding elements in full-length viral RNA. Huh7.5 cells bearing the BB7 replicon or infected with JFH-1 virus were transfected with expression vectors generating HCV mimics and controls. Cellular HCV RNA and protein levels were quantified by real-time polymerase chain reaction and Western blotting, respectively. To evaluate possible antisense effects, complementary RNAs spanning a mimic were prepared. In the BB7 genotype 1b replicon system, mimics of the polymerase (NS-5B), X and BA regions inhibited replication by more than 90%, 50%, and 60%, respectively. In the JFH-1 genotype 2 infection system, mimics that were only 74% and 46% identical in sequence relative to the corresponding region in JFH-1 inhibited HCV replication by 91.5% and 91.2%, respectively, as effectively as a mimic with complete identity to HCV genotype 2a. The inhibitory effects were confirmed by NS3 protein levels. Antisense RNA molecules spanning the 74% identical mimic had no significant effects. HCV RNA structural mimics can inhibit HCV RNA replication in replicon and infectious HCV systems and do so independent of close sequence identity with the target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.