Abstract
The zinc finger antiviral protein (ZAP) is a mammalian host restriction factor that inhibits the replication of a variety of RNA viruses, including retroviruses, alphaviruses and filoviruses, through interaction with the ZAP-responsive elements (ZRE) in viral RNA, and recruiting the exosome to degrade RNA substrate. Hepatitis B virus (HBV) is a pararetrovirus that replicates its genomic DNA via reverse transcription of a viral pregenomic (pg) RNA precursor. Here, we demonstrate that the two isoforms of human ZAP (hZAP-L and -S) inhibit HBV replication in human hepatocyte-derived cells through posttranscriptional down-regulation of viral pgRNA. Mechanistically, the zinc finger motif-containing N-terminus of hZAP is responsible for the reduction of HBV RNA, and the integrity of the four zinc finger motifs is essential for ZAP to bind to HBV RNA and fulfill its antiviral function. The ZRE sequences conferring the susceptibility of viral RNA to ZAP-mediated RNA decay were mapped to the terminal redundant region (nt 1820–1918) of HBV pgRNA. In agreement with its role as a host restriction factor and as an innate immune mediator for HBV infection, ZAP was upregulated in cultured primary human hepatocytes and hepatocyte-derived cells upon IFN-α treatment or IPS-1 activation, and in the livers of hepatitis B patients during immune active phase. Knock down of ZAP expression increased the level of HBV RNA and partially attenuated the antiviral effect elicited by IPS-1 in cell cultures. In summary, we demonstrated that ZAP is an intrinsic host antiviral factor with activity against HBV through down-regulation of viral RNA, and that ZAP plays a role in the innate control of HBV replication. Our findings thus shed light on virus-host interaction, viral pathogenesis, and antiviral approaches.
Highlights
Hepatitis B virus (HBV) is the etiological agent of human hepatitis B
The dynamics of virus and host interaction greatly influence viral pathogenesis, and host cells have evolved multiple mechanisms to inhibit viral replication. Since it was first discovered as a cellular restriction factor for retroviruses, the host-encoded zinc finger antiviral protein (ZAP) has been shown to antagonize a variety of viral species, possibly through a common mechanism by which ZAP targets viral RNA for degradation
We report that hepatitis B virus (HBV) is vulnerable to ZAP-mediated viral RNA reduction
Summary
Hepatitis B virus (HBV) is the etiological agent of human hepatitis B. The virion is an enveloped icosahedral nucleocapsid containing a partially double stranded relaxed circular (RC) DNA genome of 3.2 kb. The viral RC DNA enters the nucleus and converts into an episomal covalently closed circular (ccc) DNA, which serves as the template for all viral RNA transcripts, including precore mRNA (3.5,3.6 kb), pregenomic (pg) RNA (3.5 kb), surface (envelope) mRNA (2.4 and 2.1 kb), and X mRNA (0.7 kb). Viral double stranded DNA synthesis occurs, inside of the nucleocapsid, in an asymmetric fashion. Viral pol reverse transcribes pgRNA into minus strand DNA, followed by plus strand DNA synthesis and circularization into the RC DNA genome. The mature cytoplasmic nucleocapsid is packaged by viral envelope proteins and secreted as a progeny virus. The newly synthesized RC DNA can be transported to the nucleus to amplify the cccDNA reservoir, thereby maintaining a chronic state of HBV infection. The newly synthesized RC DNA can be transported to the nucleus to amplify the cccDNA reservoir, thereby maintaining a chronic state of HBV infection. (Reviewed in [2,6,7])
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have