Abstract

Tetrabromobisphenol A (TBBPA) is ubiquitous and its contents showing an increasing trend in the coastal environment. In order to investigate the effects of TBBPA on marine bivalves, juvenile manila clams Ruditapes phillipinarum were exposed to TBBPA for 28 days. The results showed that shell growth rate of juvenile clams after exposure to 62.5–1000 μg L−1 TBBPA for 28 d were significantly inhibited (p < 0.05). Then in order to link the changes in filtration rate, mRNA expression of insulin-like growth factor homologue (IGF) and tissue thyroid hormone (TH) contents to growth, juvenile clams were exposed to 62.5 and 500 μg L−1 TBBPA for 14 days. The transcriptional levels of neuroendocrine signals (NPF and insulin homologue) associated with filter feeding regulation, and genes of TH synthesis-related enzymes were also examined. The results showed that filtration rates was significantly reduced to 44.1% and 14% of controls after 14 d of exposure. In parallel, exposure to TBBPA significantly increased the expression levels of insulin which may elicit the filter feeding inhibition. TBBPA exposure caused alterations in tissue content of THs and mRNA expression of TH synthesis-related enzymes. However, the data showed increased T3 content, T3/T4 ratio and mRNA expression of IGF. These data demonstrated that the most important key event of TBBPA could be linked to growth impairment in juveniles was the reduction of filtration rate. These results provide a robust framework towards revealing the underlying mechanism of the growth inhibition caused by TBBPA on bivalves and understanding the adverse outcome pathway across taxonomic phyla.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call