Abstract
AbstractThe inhibition of the residual fermentation in bread doughs, in order to avoid its evolution, could be crucial to achieve reliable qualitative aroma analyses. Several options have emerged up until now, but they present some drawbacks. In this study, a mixture of methyl octanoate and methyl decanoate (Fames) has been suggested as a non‐toxic alternative to the traditional use of mercuric chloride (HgCl2). Rheofermentometric analyses revealed that although HgCl2 is quicker, Fames solution is highly effective in less than 20 min. Moreover, when HgCl2 was added to 90 min fermented dough, it exhibited an unexpected behavior with a high release of CO2 without the generation of ethyl alcohol, which could affect the dough structure. SHS‐GC/MS analyses of ethyl alcohol and 2/3‐methyl‐1‐butanol corroborated the rheofermentometer's results, with a visible reduction in the peak areas and significant differences in the One‐way Anova between Fames doughs and blank doughs. The application of the Fames solution to SPME‐GC/MS‐QTof analyses involved a reduction in the areas regarding the blank without interferences, showing a logical progression of the volatile compounds over the fermentation time, increasing their concentration from 0 to 90 min. This progression was normally lost when the inhibitors were not added, since the yeast acted in an uncontrolled manner due to the changes of temperature during freezing, thawing or chromatographic analyses, leading to wrong aroma results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.