Abstract
Some of the present in vitro experiments compare the degree of inhibition of fast axonal transport produced by tetracaine at neutral and at alkaline pH. In desheathed spinal nerves from bullfrog, 0.5 mM tetracaine reduced the quantity of [3H]leucine-labeled proteins which were transported to a ligature by 43% at pH 7.2 and by 96% at pH 8.2; separate experiments established that transport was not affected by the pH change in the absence of tetracaine. The relationship between pH and transport-blocking potency of tetracaine (pKa 8.2) is such that the local anesthetic is more potent when more uncharged form of the molecule is present; this may reflect the easier penetration across the axonal plasma membrane by the uncharged form of the tetracaine molecule. The axonal smooth endoplasmic reticulum has been attributed the function of a calcium reservoir, and it appeared possible that local anesthetics could block axonal transport by releasing calcium from this structure. However, the inhibition of transport produced by 1 mM tetracaine (pH 7.1) in sheathed nerves was approximately 80% both in nerves with a lower than normal calcium content (47% of normal) and in nerves with a normal calcium content; this result does not support the hypothesis that inhibition of axonal transport by local anesthetics is mediated by an increase in intracellular free Ca2+, but does not rule out the hypothesis either.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.