Abstract

The effects of the calmodulin inhibitors amitriptyline, desipramine, imipramine, and clomipramine on fast axonal transport, oxidative metabolism, and density of axonal microtubules were measured in bullfrog spinal nerves in vitro. The four drugs tested inhibited the fast orthograde transport of [3H]leucine-labelled proteins and the fast retrograde transport of acetylcholinesterase at a concentration of 0.2 mM. Amitriptyline, desipramine, and imipramine were equipotent inhibitors of transport, and clomipramine was a more potent inhibitor than imipramine. The adenosine triphosphate content of the nerves was reduced by at most 19% by the compounds under study; such a reduction cannot account for the inhibition of fast axonal transport. Desipramine and imipramine had no significant effect on the density of microtubules in unmyelinated axons, whereas amitriptyline only reduced it by 18%; the inhibition of axonal transport by these three drugs can therefore not be explained by microtubule disruption. Clomipramine reduced microtubular density by 40%, and this effect may have contributed to the inhibition of fast axonal transport. The inhibition of fast axonal transport by desipramine, imipramine, and amitriptyline may be related to the inhibition of calmodulin function by these drugs. The similar potency of these three drugs as inhibitors of fast axonal transport goes in parallel with their known similar potency as calmodulin antagonists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call