Abstract

Ciliary beating in the airway epithelium plays an important role in preventing infection by eliminating small particles and pathogens. Stimulation of β2 adrenergic receptor (β2AR) increases [cAMP]i levels and strongly activates this ciliary beating. β2AR is localized to the apical membrane of the airways by indirectly binding to ezrin, an actin-binding protein. Ezrin takes active phosphorylated and inactive dephosphorylated states at Thr-567. Previously we showed that procaterol-stimulated ciliary beating was impaired in the ezrin-knockdown mice. In this study, we examined the roles of ezrin and its phosphorylation in regulating ciliary beating by using NSC305787, an ezrin inhibitor, in normal human airway epithelial cells (NHBE). We found that NSC305787 inhibits the phosphorylation of ezrin with an IC50 of 50 μM in NHBE. Treatment with NSC305787 for 4 h or more decreased the expression of β2AR in the cell membrane and induced vesicle- or dot-like expression of ezrin and β2AR inside the cell. As a result, inhibition of ezrin phosphorylation by NSC305787 attenuated the effect of procaterol-induced activation of ciliary beating in both frequency and distance indices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call