Abstract
The cutaneous antiinflammatory action of Dead-Sea brine is thought to be due to magnesium ions. To elucidate their mode of action, we studied the influence of isotonic solutions containing high concentrations of Mg2+ (up to 115mM) on the formation of 5-lipoxygenase-derived eicosanoids in human polymorphonuclear leukocytes. The cells were stimulated by either ionophore A23187 or the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine. We observed a pronounced inhibition of the formation of leukotriene B4 and 5-hydroxyeicosatetraenoic acid from either added [1-14C] or endogenously liberated arachidonic acid. In the latter case, the sum of arachidonic acid and its oxygenation products was also markedly diminished. The inhibitory effects of Mg2+ depended in a reciprocal manner on the concentration of Ca2+ in the incubation medium. An unspecific damage to cells as reason for the inhibitory effects was excluded. Human recombinant 5-lipoxygenase was also inhibited by Mg2+ in the same concentration range (IC50 16 mM). These data suggest that high concentrations of Mg2+ inhibit the eicosanoid metabolism both at the level of the liberation of arachidonic acid and by direct inhibition of the 5-lipoxygenase enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.