Abstract

It has been shown that the human acute lymphoblastic leukemia (ALL) T cell line (RPMI 8402) selected with irinotecan (CPT-11) is transformed to a multidrug resistant (MDR) phenotype (CPT-K5) with cross-resistance to mitoxantrone (MX). Since MX is a well-documented substrate for the efflux transporter breast cancer resistant protein (BCRP/ABCG2), we assessed the contribution of drug efflux to MX resistance in CPT-K5 cells. Our results demonstrate that CPT-K5 cells had markedly higher expression levels of BCRP, negligible expression of MRP2 and P-gp, and lower intracellular retention of MX as compared to RPMI 8402 cells. Surprisingly, MX resistance in CPT-K5 cells was not reversed by the BCRP chemical inhibitor, novobiocin (NOV), or gene-specific siRNA, although intracellular MX concentrations were significantly increased when BCRP was functionally knocked down. These results suggest that up-regulation of BCRP plays a minimal role in conferring MX resistance to CPT-K5 cells, highlighting the existence of multiple, redundant mechanisms of drug resistance. The current results support the concept of “multifactorial multidrug resistance”, a recently-described phenomenon that ascribes multidrug resistance to many possible cellular mechanisms, not only by efflux drug transporters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call