Abstract

<p>Caffeine (1,3,7-trimethylxanthine) was isolated from black tea and characterized using different physical methods (determination of melting point, thin layer chromatography, FTIR spectroscopy and UV spectrophotometry). The corrosion inhibition performance of the caffeine isolate on copper corrosion in neutral 0.5 mol L-1 NaCl solution was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The obtained results show that caffeine effectively inhibited the corrosion reaction in the chloride solution with inhibition efficiency up to » 92 %. Furthermore, caffeine was found to function essentially as a cathodic inhibitor by adsorption on the copper surface according to the Langmuir adsorption isotherm. The adsorption free energy of » –37 kJ mol<sup>-1</sup> indicates strong adsorption of the caffeine on the metal surface. Quantum chemical computations and molecular dynamics simulations were adapted to understudy the adsorption of a single caffeine molecule as well as a polymeric cluster of caffeine molecules on a model Cu surface at a molecular level and show good agreement with the experimental findings.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.