Abstract

Circ_0004381 promotes neuronal damage in Parkinson disease, but its role in Alzheimer disease (AD) is unreported. The goal of this study was to investigate the role and potential mechanisms of circ_0004381 effects in AD models. Primary hippocampal neurons were treated with amyloid-β (Aβ1-42) to construct AD cell models. We found that circ_0004381 was upregulated in Aβ1-42-treated hippocampal neurons. Knockdown of circ_0004381 attenuated Aβ1-42-induced apoptosis, oxidative stress, and mitochondrial dysfunction in hippocampal neurons. Next, we induced microglia activation with lipopolysaccharide (LPS). The results of flow cytometry experiments showed that knockdown of circ_0004381 promoted microglial M2-type polarization and knockdown of circ_0004381 inhibited the production of inflammatory factors by microglia. Furthermore, knockdown of circ_0004381 improved cognitive function of male APPswe/PS1dE9 transgenic mice. Mechanistically, circ_0004381 regulated presenilin-1 (PSEN1) expression by absorbing miR-647. MiR-647 inhibition attenuated the effects of circ_0004381 knockdown. In conclusion, knockdown of circ_0004381 attenuated hippocampal neuronal damage and promoted microglia M2-type polarization through the miR-647/PSEN1 axis, ultimately improving cognitive function in AD model mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.