Abstract

In previous studies, we reported that sphingosine 1-phosphate (Sph-1-P) inhibits the chemotactic motility of some cancer cell lines such as mouse melanoma cells, as well as human smooth muscle cells, at a very low concentration, as demonstrated by a transwell migration assay method (Proc. Natl. Acad. Sci. USA 89, 9698, 1992; J. Cell Biol. 130, 193, 1995). In this study, we investigated the effect of Sph-1-P on the chemotactic motility and invasiveness of human neutrophils, utilizing three different assay systems: (a) a transwell migration assay where IL-8 or fLMP was added as a chemotactic factor, (b) a phagokinetic assay with gold colloids, and (c) a trans-endothelial migration assay with human umbilical vein endothelial cells (HUVECs) plated on collagen layers. We found that among various sphingosine derivatives, Sph-1-P specifically inhibited the IL-8- or fLMP-induced chemotactic migration of neutrophils at concentrations below 1 μM. Phagokinetic activity of neutrophils was also suppressed by Sph-1-P, but more moderately than by the PKC inhibitory sphingosine analog, trimethylsphingosine. Finally, Sph-1-P inhibited trans-endothelial migration and invasiveness of neutrophils into HUVEC-covered collagen layers, whereas no effect on their adhesion to HUVECs was observed. These observations strongly suggest that Sph-1-P can act as a specific and effective motility regulator of human neutrophils, raising the possibility of future applications of Sph-1-P, or its analogs, as anti-inflammatory agents regulating invasive migration of neutrophils through endothelial layers at injured vascular sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.