Abstract

BackgroundRNA binding protein motif (RBM3) is associated with radioresistance in nasopharyngeal carcinoma (NPC), and miR-383-5p was predicted to target the 3'-untranslated region (3'UTR) of RBM3 messenger RNA (mRNA). Our study aimed to investigate the role and the mechanisms of miR-383-5p targeting RBM3 in NPC cell proliferation and radioresistance (RR).MethodsThe expression of miR-383-5p was detected by Real-time quantitative PCR (qRT-PCR) between RS (Radiosensitivity) and RR (Radioresistance) NPC patient- tissue specimens and cell lines. Cell Counting Kit-8 (CCK-8) and Clonogenic survival assay were applied to analyze the effect of miR-383-5p on NPC cell proliferation and radioresistance. Possible downstream target of miR-383-5p in NPC cells, RBM3was evaluated by luciferase assay and qRT-PCR. miR-383-5p inhibited NPC cell proliferation and radioresistance through RBM3 by rescue experiments. The effect of miR-383-5p on radiation-induced apoptosis was explored through Flow cytometric analysis and Western blotting. Western blotting was analyzed the molecular of RBM3-mediated Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) signaling pathwaysResultsThe expression of miR-383-5p was decreased in radioresistant NPC tissues and cells. miR-383-5p inhibited cell proliferation and radioresistance in CNE1/IR cells. We also observed that therapeutic administration of a miR-383-5p agomir dramatically sensitized NPC xenografts to radiation in a mouse model. Conversely, in the same xenograft model, administration of a miR-383-5p antagomir dramatically increased NPC resistance to radiation. miR-383-5p targeted the 3'UTR of RBM3. miR-383-5p inhibited NPC cell proliferation and radioresistance through RBM3. Finally, we found that miR-383-5p increased radiation-induced apoptosis, activated JNK signaling, and inhibited ERK signaling.ConclusionsOur study revealed that miR-383-5p targeted the 3'UTR of RBM3 and contributed to the efficacy of NPC radiation therapy by altering the RBM3-mediated JNK and ERK signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.