Abstract

The injection of non-homologous cytoplasm into any strain of large free-living amoebae leads to a 60% inhibition of division amongst recipient cells. When the post-microsomal supernatant fraction of Amoeba discoides was injected into A. proteus, this inhibition of division was as high as 95%. The incorporation of tritiated precursors, either [3H]uridine or 3H-amino acids, into these inhibited amoebae was studied at various times after the injection of the inhibitory material using autoradiography. When cells were grown in [3H]uridine, autoradiographs indicated that RNA synthesis had ceased 2 days after the injection of non-homologous material. However, if [3H]uridine was injected into the inhibited cells, some synthesis of RNA could be detected up to 4 days after the injection of inhibitor. These results suggested that uptake of [3H]uridine was impaired and that one site of action of the inhibitory molecules was RNA synthesis for membrane components. Experiments with a variety of 3H-amino acids suggested that protein synthesis continued for at least 9 days after the injection of non-homologous cytoplasm, and that in these cells some informational RNA molecules were long-lived. There seemed to be accumulation of material containing [3H]lysine in the nuclei of control cells taken at random from cultures, and this was seen in the nuclei of inhibited cells 1 day after injection. However, 2 days after the injection of inhibitor, no accumulation of [3H]lysine-containing material was found in the nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.