Abstract

Bronzes are largely used in various domains such as battery connectors, archaeological artefacts and urban statues, suffering from corrosion process leading to the formation of corrosion products. A protection treatment could be used to insulate them from this environment. In this way we contribute to the protection of bronze in the environment by use of organic corrosion inhibitors. In this work a novel organic compound (3-phenyl-1·2·4-triazole-5-thione) was tested as a corrosion inhibitor on a pure reference bronze alloy (CNR alloy). The electrochemical behaviour was investigated in 3%NaCl solution, in the presence and absence of the inhibitor formulation using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The obtained results confirm that the compound is a good corrosion inhibitor which acts reduce both cathodic and anodic reactions rates. The inhibiting efficiency was found to be about 97% at 2·5 mM of inhibitor concentration. SEM coupled with EDX and XPS analysis confirms the good protective effect due to the establishment of an inhibitor film on the bronze sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.