Abstract

Hip fracture and myocardial infarction cause significant morbidity and mortality. In vivo studies raising serum cholesterol levels as well as pro-inflammatory cytokines such as TNFα manifest bone loss and atherosclerotic vascular disease, suggesting that abnormalities of cholesterol transport may contribute to osteoporosis. We used the mouse osteocyte cell line (MLO-Y4) to investigate the effects of TNFα on the expression of cholesterol acceptor proteins such as apolipoprotein A-I (apo A-I) and apolipoprotein E (apo E), as well as on the cholesterol transporters ATP-binding cassette-1 (ABCA1), scavenger receptor class B type 1 (SRB1), and cluster of differentiation 36 (CD36). MLO-Y4 cells do not express apo A-I or apo E; however, they do express all three cholesterol transporters (ABCA1, SRB1, and CD36). Treatment of MLO-Y4 cells with TNFα had no effect on SRB1, CD36, and osteocalcin levels; however, TNFα reduced ABCA1 protein levels in a dose-dependent manner and cholesterol efflux to apo A-I. Interestingly, TNFα treatment increased ABCA1 promoter activity and ABCA1 mRNA levels, and increased liver X receptor α protein expression, but had no effect on retinoid X receptor α and retinoic acid receptor α levels. Pharmacological inhibition of p38 mitogen-activated protein (MAP) kinase, but not c-jun-N-terminal kinase 1 or mitogen-activated protein kinase (MEK), restored ABCA1 protein levels in TNFα-treated cells. These results suggest that pro-inflammatory cytokines regulate cholesterol metabolism in osteocytes in part by suppressing ABCA1 levels post-translationally in a p38 MAP kinase-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call