Abstract

In this study, heparin and polyethyleneimine–folic acid modified graphene oxide was designed and synthesized as a dual-targeting biomaterial to load doxorubicin (DOX@GPFH) with high loading capacity for enhanced cellular uptake. GDC0941, a phosphatidylinositide 3-kinase/Akt phosphorylation inhibitor, was selected to enhance anti-metastasis effect of DOX@GPFH via down-regulating expression of matrix metalloproteinase. Modified with heparin, the stability of DOX@GPFH was significantly enhanced and the drug loading ratio increased largely from 64.4% to 125.1%. The inhibition rates of the mixture of DOX@GPFH and GDC0941 in vitro by wound healing, cell migration and invasion assays were 61.2%±13.9%, 81.0%±3.6% and 76.8%±5.2%, respectively, while the tumor and the pulmonary anti-metastasis rates tested in vivo were 77.0%±7.6% and 73.7%±9.6%, respectively. Our findings illustrated an effective approach for developing dual-targeting graphene oxide with high drug loading for pulmonary anti-metastasis of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call