Abstract

The commercialization of perovskite solar cells is badly limited by stability, an issue determined mainly by perovskite. Herein, inspired by a natural creeper that can cover the walls through suckers, we adopt polyhexamethyleneguanidine hydrochloride as a molecular creeper on perovskite to inhibit its decomposition starting from the annealing process. The molecule possesses a long-line molecular structure where the guanidinium groups can serve as suckers that strongly anchor cations through multiple hydrogen bonds. These features make the molecular creeper can cover perovskite grains and inhibit perovskite decomposition by suppressing cations’ escape. The resulting planar perovskite solar cells achieve an efficiency of 25.42% (certificated 25.36%). Moreover, the perovskite film and device exhibit enhanced stability even under harsh damp-heat conditions. The devices can maintain >96% of their initial efficiency after 1300 hours of operation under 1-sun illumination and 1000 hours of storage under 85% RH, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.