Abstract

Mer signaling participates in a novel inhibitory pathway in TLR activation. The purpose of the present study was to examine the role of Mer signaling in the down-regulation of TLR4 activation-driven immune responses in mice, i.t.-treated with LPS, using the specific Mer-blocking antibody. At 4 h and 24 h after LPS treatment, expression of Mer protein in alveolar macrophages and lung tissue decreased, sMer in BALF increased significantly, and Mer activation increased. Pretreatment with anti-Mer antibody did not influence the protein levels of Mer and sMer levels. Anti-Mer antibody significantly reduced LPS-induced Mer activation, phosphorylation of Akt and FAK, STAT1 activation, and expression of SOCS1 and -3. Anti-Mer antibody enhanced LPS-induced inflammatory responses, including activation of the NF-κB pathway; the production of TNF-α, IL-1β, and MIP-2 and MMP-9 activity; and accumulation of inflammatory cells and the total protein levels in BALF. These results indicate that Mer plays as an intrinsic feedback inhibitor of the TLR4- and inflammatory mediator-driven immune responses during acute lung injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.