Abstract

Macrophage activation syndrome (MAS) is characterized by multi-lineage cytopenias, hypercytokinemia, and tissue hemophagocytosis. Transcription factor Nrf2 is a master regulator of redox homeostasis. In this work we aim to investigate the role of Nrf2 in murine hyperinflammation and the mechanisms by which Nrf2 activation by red blood cell products regulates pro-inflammatory cytokine production. We induce murine MAS in wildtype and Nrf2 knockout (Nrf2 -/-) mice by repeat administration of TLR9-agonist CpG. Clinical and biochemical markers of disease were measured including complete blood counts, liver and spleen pathology, serum free heme, ferritin, and cytokine profiles. In vitro bone marrow derived macrophages and dendritic cells were used to investigate regulation of CpG-induced cytokine expression by oxidized red blood cells and hemin. Patients with hyperinflammatory disease have higher levels of Nrf2 gene expression. Mice with CpG-induced hyperinflammation have elevated systemic lipid peroxidation which is exacerbated in Nrf2 -/- mice. Compared to wildtype controls, Nrf2 -/- mice develop significantly worse organomegaly, organ pathology, and reticulocytosis. Nrf2 -/- mice have exacerbated hypercytokinemia in cytokines central MAS physiology: IL-12, IFNg, and IL-10. In vitro we found that oxidized red blood cell lysates and hemin are able to suppress IL-12 transcription and protein production from bone marrow derived dendritic cells in a Nrf2-dependent manner. Together our findings show that transcription factor Nrf2 is highly expressed in patients with hyperinflammatory disease and demonstrate a protective role for Nrf2 in a murine model of MAS in part due to Nrf2-mediated suppression of proinflammatory cytokine production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.