Abstract

Because carbon monoxide (CO) has been proposed to have anti-inflammatory properties, we sought protective effects of CO in pulmonary O(2) toxicity, which leads rapidly to lung inflammation and respiratory failure. Based on published studies, we hypothesized that CO protects the lung against O(2) by selectively increasing expression of antioxidant enzymes, thereby decreasing oxidative injury and inflammation. Rats exposed to O(2) with or without CO [50-500 parts/million (ppm)] for 60 h were compared for lung wet-to-dry weight ratio (W/D), pleural fluid volume, myeloperoxidase (MPO) activity, histology, expression of heme oxygenase-1 (HO-1), and manganese superoxide dismutase (Mn SOD) proteins. The brains were evaluated for histological evidence of damage from CO. In O(2)-exposed animals, lung W/D increased from 4.8 in normal rats to 6.3; however, only CO at 200 and 500 ppm decreased W/D significantly (to 5.9) during O(2) exposure. Large volumes of pleural fluid accumulated in all rats, with no significant CO treatment effect. Lung MPO values increased after O(2) and were not attenuated by CO treatment. CO did not enhance lung expression of oxidant-responsive proteins Mn SOD and HO-1. Animals receiving O(2) and CO at 200 or 500 ppm showed significant apoptotic cell death in the cortex and hippocampus by immunochemical staining. Thus significant protection by CO against O(2)-induced lung injury could not be confirmed in rats, even at CO concentrations associated with apoptosis in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call