Abstract

Lytic mycobacteriophage D29 has the potential for tuberculosis treatment including multidrug-resistant strains. The aims of this study are to investigate deposition and distribution of aerosolized phage D29 particles in naive Balb/C mice, together with pharmacokinetics and evaluation of acute lung injury. Pharmacokinetics and BALF (bronchoalveolar lavage fluids) were analyzed after administration of phage D29 aerosols by endotracheal route using Penn-century aerosolizer; Collison 6-jet and Spinning top aerosol nebulizers (STAG) were used to generate phage aerosols with different particle size distributions in nose-only inhalation experiments. After exposure, deposited amounts of phage D29 particles in respiratory tracts were measured, and deposition efficiencies were calculated. A typical path deposition model for mice was developed, and then comparisons were made between predictions and experimentally measured results. Approximately 10% of aerosolized phages D29 reached lung of mouse for pulmonary delivery, and were completely eliminated until 72 h after administration. In contrast, about 0.1% of intraperitoneal injected phages reached the lung, and were almost eliminated at 12 h time point. The inflammation was hardly observed in lung according to the results of BALF analysis. The CMADs (count median aerodynamic diameters) of generated aerosol by Collison and STAG nebulizer were 0.8 μm and 1.5 μm, respectively. After nose-only exposure, measured deposition efficiencies in whole respiratory tract for 0.8 and 1.5 μm phage particles were below 1% and 10%, respectively. Predictions of the computer deposition model compared fairly well with experimentally measured results. This is the first systematic study of phage D29 aerosol respiratory challenge in laboratory animals. It provides evidence that aerosol delivery of phage D29 is an effective way for treating pulmonary infections caused by Mycobacterium tuberculosis. This research will also provide important data for future inhalation experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.