Abstract
Pseudomonas aeruginosa (P. aeruginosa) pneumonia can have serious physiological consequences, particularly when P. aeruginosa biofilms are formed. Although inhaled therapy is preferred, inhaled drugs tend to get trapped by pulmonary mucus, which hinders efficient antibiotic permeability through mucus and biofilms. In this study, we prepare poly[2-(pentamethyleneimino)ethyl methacrylate]-block-poly[2-(N-oxide-pentamethyleneimino)ethyl methacrylate] (PPEMA-b-PPOEMA) micelles loaded with azithromycin (AZM) using reversible addition-fragmentation chain transfer (RAFT) polymerization to achieve effective treatment of P. aeruginosa pneumonia. The zwitterionic structure on the surface of the micelle facilitates the successful traversal of the mucus and optimal concentration within the biofilm. Furthermore, the protonation of piperidine in the polymer enables the micelles to exhibit a positive charge in the acidic environment of a bacterial infection, enhancing AZM's interaction with the bacterium. Both in vivo and in vitro experiments demonstrate that this transmucosal zwitterionic polymer, in combination with a charge reversal strategy, effectively promotes the enrichment of micelles at the site of bacterial infection, thereby increasing the number of antibiotics reaching the bacterial interior and demonstrating remarkable antibacterial synergy. Overall, this work offers a promising approach for trans-airway drug delivery in the treatment of pneumonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.