Abstract

High-efficiency light-emitting diodes emitting amber, green, blue and ultraviolet light have been obtained through the use of InGaN active layers instead of GaN active layers. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices. Long-lifetime violet InGaN multi-quantum-well/GaN/AlGaN separate-confinement heterostructure laser diodes (LDs) were successfully fabricated using epitaxially laterally overgrown GaN by reducing a large number of threading dislocations originating from the interface between GaN and sapphire substrate. The threading dislocations shorten the lifetime of the LDs through an increase of the threshold current density. The LDs with cleaved mirror facets showed an output power as high as 30 mW under room-temperature continuous-wave (CW) operation with a stable fundamental transverse mode. The lifetime of the LDs at a constant output power of 5 mW was estimated to be approximately 3000 h under CW operation at an ambient temperature of 50 °C. These results indicate that these LDs already can be used for many real applications, such as digital versatile disks, laser printers, sensors and exciting light sources as a commercial product with a high output power and a high reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call