Abstract

In this Letter, we proposed a robust InGaAs/Si bonded heterojunction by polycrystalline Si (poly-Si) and amorphous interlayers. The ultra-thin amorphous layer is induced through Ar plasma treatment. The synergism of poly-Si and amorphous interlayers effectively blocks the lattice mismatch and releases the interfacial thermal stress. A bubble- and defect-free bonding interface is achieved even if after annealing at 500 °C, demonstrating compatibility with high-temperature processes. The heavily doped poly-Si interlayer sweeps the electric field from the poly-Si layer and concentrates in the amorphous layer, rendering electron tunneling through the bonding interface and reducing the interfacial recombination rates. As a result, the bonded InGaAs/Si PIN photodetector harvests a saturated and low dark density of 0.26 mA/cm2 at −1 V and a high rectification ratio of 3.5 × 105 at ±1 V. Additionally, the non-optimized device achieves a high responsivity of 0.82 A/W at 1550 nm. These results indicate that the proposed bonding strategy provides a viable route to tackle the electronic, optical, and thermal barriers of integrating single-crystal InGaAs into Si platforms. This enables the photodetection of InGaAs/Si devices with a high signal-to-noise ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call