Abstract

Integration of an InGaAs/InP quantum well infrared photodetector (QWIP) onto a Si substrate was successfully demonstrated via a metal-assisted wafer bonding (MWB) using a Mo/Au metal scheme. The Mo/Au/Mo layer, situated between the QWIP structure and the Si, has shown a well-ordered lamination. It provides a smooth surface with a roughness of about 0.8 nm, as measured by a scanning electron microscope (SEM) and atomic force microscopy (AFM). The results on crystalline quality evaluated by Raman spectroscopy and X-ray diffraction (XRD) imply that the MWB could be achieved without any measurable material degradation and residual strain. Temperature dependence of dark current revealed that there is no noticeable change in the dark current properties of the QWIP after bonding on Si, despite that the quantum wells are only 200 nm away from the bonding interface.

Highlights

  • Compound semiconductor based quantum well infrared photodetectors (QWIPs) have been showing a tremendous progress for infrared (IR) applications such as high resolution IR imaging from space, medical diagnosis, monitoring environment, and surveillance [1,2,3]

  • Integration of an InGaAs/InP quantum well infrared photodetector (QWIP) onto a Si substrate was successfully demonstrated via a metal-assisted wafer bonding (MWB) using a Mo/Au metal scheme

  • The Mo/Au/Mo layer, situated between the QWIP structure and the Si, has shown a well-ordered lamination. It provides a smooth surface with a roughness of about 0.8 nm, as measured by a scanning electron microscope (SEM) and atomic force microscopy (AFM)

Read more

Summary

Introduction

Compound semiconductor based quantum well infrared photodetectors (QWIPs) have been showing a tremendous progress for infrared (IR) applications such as high resolution IR imaging from space, medical diagnosis, monitoring environment, and surveillance [1,2,3].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call