Abstract

Strain-compensated layers in photovoltaic devices can yield unique advantages as the absorption threshold can be extended towards longer wavelengths beyond that of the lattice-matched material, which is particularly important for thermophotovoltaic (TPV) applications. In such a nanostructure, where InGaAs barriers and InGaAs quantum wells of appropriate compositions are strain compensated on an InP substrate, the absorption of a quantum well cell (QWC) can be extended to ∼2 μm . Due to the higher band-gap barriers, the dark current remains at a low level more appropriate to lattice-matched InGaAs. Great care has to be taken in design and growth to achieve a situation that is close to strain balance with zero stress. Results are presented on a strain-compensated QWC that absorbs out to 1.77 μm . Predictions show that strain-compensated InGaAs/InGaAs QWCs have superior performance when compared with bulk InGaAs on InP monolithic interconnected modules and GaSb TPV cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.