Abstract

Infrasound propagation through various atmospheric conditions and interaction with environmental factors in- duce highly non-linear and non-stationary effects that make it difficult to extract reliable attributes for classi- fication. We present featureless classification results on the Library of Typical Infrasonic Signals using several deep learning techniques, including long short-term memory, self-normalizing, and fully convolutional neural net- works with statistical analysis to establish significantly superior models. In general, the deep classifiers achieve near-perfect classification accuracies on the four classes of infrasonic events including mountain associated waves, microbaroms, auroral infrasonic waves, and volcanic eruptions. Our results provide evidence that deep neural network architectures be considered the leading candidate for classifying infrasound waveforms which can directly benefit applications that seek to identify infrasonic events such as severe weather forecasting, natural disaster early warning systems, and nuclear weapons monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.