Abstract

AbstractDuring the spring seasons of 2003 and 2004, an infrared thermal camera was deployed in and around supercell thunderstorms in an attempt to retrieve the temperature at the cloud base of a mesocyclone prior to tornadogenesis. The motivation for this exercise was to obtain temperature information that might indicate the thermal structure, timing, and extent of the rear-flank downdraft (RFD) and possibly elucidate its relationship to tornadogenesis.An atmospheric transmissivity study was conducted to account for the effects of atmospheric transmission on the measured temperatures, and to determine an ideal range of distances from which infrared images of a wall cloud or a tornado could be safely captured while still retrieving accurate cloud temperatures. This range was found to be 1.5–3 km.Two case days are highlighted in which the infrared camera was deployed within 1.5–3 km of a tornado; the visible and infrared images are shown side by side for comparison. On the single occasion on which the tornadogenesis phase was captured, the infrared images show no strong horizontal temperature gradients. From the infrared images taken of tornadoes, it can be inferred that the infrared signal from the tornado consisted primarily of infrared emissions from lofted dust particles or cloud droplets, and that the infrared signal from the tornado condensation funnel was easily obscured by infrared emissions from lofted dust particles or intervening precipitation curtains.The deployment of the infrared camera near supercell thunderstorms and the analysis of the resulting images proved challenging. It is concluded that the infrared camera is a useful tool for measuring cloud-base temperature gradients provided that distance and viewing angle constraints are met and that the cloud base is unobscured by rain or other intervening infrared emission sources. When these restrictions were met, the infrared camera successfully retrieved horizontal temperature gradients along the cloud base and vertical temperature gradients (close to the moist adiabatic lapse rate) along the tornado funnel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call