Abstract
We present spectroscopic results for all galaxies observed with the Spitzer Infrared Spectrograph (IRS) which also have total infrared fluxes f(ir) measured with the Infrared Astronomical Satellite (IRAS), also using AKARI photometry when available. Infrared luminosities and spectral energy distributions (SEDs) from 8 um to 160 um are compared to polycyclic aromatic hydrocarbon (PAH) emission from starburst galaxies or mid-infrared dust continuum from AGN at rest frame wavelengths ~ 8 um. A total of 301 spectra are analyzed for which IRS and IRAS include the same unresolved source, as measured by the ratio fv(IRAS 25 um)/fv(IRS 25 um). Sources have 0.004 < z < 0.34 and 42.5 < log L(IR) < 46.8 (erg per s) and cover the full range of starburst galaxy and AGN classifications. Individual spectra are provided electronically, but averages and dispersions are presented. We find that log [L(IR)/vLv(7.7 um)] = 0.74 +- 0.18 in starbursts, that log [L(IR)/vLv(7.7 um)] = 0.96 +- 0.26 in composite sources (starburst plus AGN), that log [L(IR)/vLv(7.9 um)] = 0.80 +- 0.25 in AGN with silicate absorption, and log [L(IR)/vLv(7.9 um)] = 0.51 +- 0.21 in AGN with silicate emission. L(IR) for the most luminous absorption and emission AGN are similar and 2.5 times larger than for the most luminous starbursts. AGN have systematically flatter SEDs than starbursts or composites, but their dispersion in SEDs overlaps starbursts. Sources with the strongest far-infrared luminosity from cool dust components are composite sources, indicating that these sources may contain the most obscured starbursts.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have