Abstract

A variety of organic surfactants are found at air-water interfaces in natural environments, including on the surfaces of aqueous aerosols. The structure and morphology of these organic films can have profound impacts on material transfer between the gas and condensed phases, the optical properties of atmospheric aerosol, and chemical processing at air-water interfaces. Combined, these effects can have significant impacts on climate via radiative forcing, but our understanding of organic films at air-water interfaces is incomplete. Here, we examine the impact of the polar headgroup and alkyl tail length on the structure and morphology of organic monolayers at the air-water interfaces. First, we focus on the substituted carboxylic acids, α-keto acids, using Langmuir isotherms and infrared reflection absorption spectroscopy (IR-RAS) to elucidate key structures and phase behaviors of α-keto acids with a range of surface activities. We show that the structure of α-keto acids, both soluble and insoluble, at water surfaces is a compromise between van der Waals interactions of the hydrocarbon tail and hydrogen bonding interactions involving the polar headgroup. Then, we use this new data set regarding α-keto acid films at water surfaces to examine the role of the polar headgroup on organic films using a similar substituted carboxylic acid (α-hydroxystearic acid), an unsubstituted carboxylic acid (stearic acid), and an alcohol (stearyl alcohol). We show that the polar headgroup and its hydrogen bonding interactions can significantly affect the orientation of amphiphiles at air-water interfaces. Here, we provide side-by-side comparisons of Langmuir isotherms and IR-RA spectra for a set of environmentally relevant organic amphiphiles with a range of alkyl tail lengths and polar headgroup structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call