Abstract

To study the optical properties of background atmospheric aerosols in East China, we carried out observations of the physical, chemical and optical properties of atmospheric aerosols at the summit of Mount Tai (Mt. Tai, 1533.7 m above sea level) from 13 May to 25 June 2017. The results show that the average scattering coefficient ( σ sca , 550 ) at 550 nm of the aerosols at the summit of Mt. Tai is 40.3 Mm−1, and the average absorption coefficient ( σ abs , 550 ) at 550 nm is 16.0 Mm−1. The complex refractive index of aerosols is a key parameter for aerosol retrieval and modeling. There are few studies on the equivalent complex refractive index of aerosol in the Taishan area. We calculated the aerosol equivalent complex refractive index using the observed aerosol scattering coefficients, absorption coefficients and particle size distribution data, providing more data support for future modeling in this region. The real part (n) of the complex refractive index at 550 nm of aerosol ranges from 1.31 to 1.98 (mostly under 1.50), with an average value of 1.38, while the imaginary part (k) ranges from 0.014 to 0.251 (less than 0.10 for over 95% samples), with an average value of 0.040. The analysis of the n and k of the aerosol average complex refractive index shows that the scattering properties of the aerosols at the summit of Mt. Tai are relatively weak and the absorption properties are relatively strong when compared with those of other kinds of aerosols. The k of the aerosol complex refractive index at the summit of Mt. Tai has strong correlations with the wind speed, temperature, as revealed by the correlation analysis.

Highlights

  • The optical properties of atmospheric aerosols are important parameters affecting atmospheric radiation

  • It is important to strengthen the observation of local aerosols and understand the optical properties of local aerosols

  • The extinction coefficient is the sum of the scattering coefficient and the absorption coefficient

Read more

Summary

Introduction

The optical properties (scattering coefficient, absorption coefficient, extinction coefficient, single scattering albedo and optical depth) of atmospheric aerosols are important parameters affecting atmospheric radiation. The Fifth Assessment Report of the Government Panel on Climate Change indicates that atmospheric aerosols can directly alter the distribution of global radiation by scattering and absorbing sunlight [1]. The optical properties of aerosols affect the direct climatic effects of aerosols, and affect the environmental effects of aerosols, such as the formation of haze and visibility. Due to the short retention time and diverse sources of aerosols in the atmosphere, their regional distribution, shape, scale and chemical composition are all affected by local emissions. It is important to strengthen the observation of local aerosols and understand the optical properties of local aerosols. Many studies have been carried out on the optical properties of local aerosols. The AERONET (Aerosol Robotic Network) [2] and the CARSNET

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call