Abstract
Due to the variation of imaging environment and limitations of infrared imaging sensors, infrared images usually have some drawbacks: low contrast, few details and indistinct edges. Hence, to promote the applications of infrared imaging technology, it is essential to improve the qualities of infrared images. To enhance image details and edges adaptively, we propose an infrared image enhancement method under the proposed image enhancement scheme. On the one hand, on the assumption of high-quality image taking more evident structure singularities than low-quality images, we propose an image enhancement scheme that depends on the extractions of structure features. On the other hand, different from the current image enhancement algorithms based on deep learning networks that try to train and build the end-to-end mappings on improving image quality, we analyze the significance of first layer in Stacked Sparse Denoising Auto-encoder and propose a novel feature extraction for the proposed image enhancement scheme. Experiment results prove that the novel feature extraction is free from some artifacts on the edges such as blocking artifacts, “gradient reversal”, and pseudo contours. Compared with other enhancement methods, the proposed method achieves the best performance in infrared image enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.