Abstract

Infrared electroluminescence was observed from GeSn/Ge p-n heterojunction diodes with 8% Sn, grown by molecular beam epitaxy. The GeSn layers were boron doped, compressively strained, and pseudomorphic on Ge substrates. Spectral measurements indicated an emission peak at 0.57 eV, about 50 meV wide, increasing in intensity with applied pulsed current, and with reducing device temperatures. The total integrated emitted power from a single edge facet was 54 μW at an applied peak current of 100 mA at 100 K. These results suggest that GeSn-based materials maybe useful for practical light emitting diodes operating in the infrared wavelength range near 2 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call