Abstract

With the development of infrared technology, infrared dim and small target detection plays a vital role in precision guidance applications. To address the problems of insufficient dataset coverage and huge actual shooting costs in infrared dim and small target detection methods, this paper proposes a method for generating infrared dim and small target sequence datasets based on generative adversarial networks (GANs). Specifically, first, the improved deep convolutional generative adversarial network (DCGAN) model is used to generate clear images of the infrared sky background. Then, target–background sequence images are constructed using multi-scale feature extraction and improved conditional generative adversarial networks. This method fully considers the infrared characteristics of the target and the background, which can achieve effective expansion of the image data and provide a test set for the infrared small target detection and recognition algorithm. In addition, the classifier’s performance can be improved by expanding the training set, which enhances the accuracy and effect of infrared dim and small target detection based on deep learning. After experimental evaluation, the dataset generated by this method is similar to the real infrared dataset, and the model detection accuracy can be improved after training with the latest deep learning model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call