Abstract
Human knowledge of infrared (IR) radiation is about 200 years old. However it was in the late 20th century that we developed a wide range of smart technologies for detection and started to take advantage for our benefit. Today IR detector technology is in its 3rd generation and comes with challenging demands. Based on the propagation of IR radiation through free space it is divided into different transmission windows. The most interesting for thermal imaging are the mid-wave IR (MWIR) and the long-wave IR (LW IR). Infrared detectors for thermal imaging have a number of applications in industry, security, search & rescue, surveillance, medicine, research, meteorology, climatology and astronomy. Currently high-performance IR imaging technology is mainly based on epitaxially grown structures of the small-bandgap bulk alloy mercury-cadmium-telluride (MCT), indium antimonide (InSb) and GaAs based quantum-well infrared photodetectors (QWIPs), depending on the application and wavelength range. However, they operate at low temperatures requiring costly and bulky cryogenic systems. In addition there is always a need for better performance, which generates possibilities for developing new technologies. Some emerging technologies are quantum dot infrared photodetectors (QDIPs), type-II strained layer super-lattice, and QDIPs with type-II band alignment. In this report a brief review of the current and new technologies for high performance IR detectors, will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.