Abstract
A step-scan Fourier-transform spectrometer coupled with a 6.4 m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of the reaction intermediate CH3SO2 radical, produced upon irradiation of a flowing gaseous mixture of CH3I and SO2 in CO2 at 248 nm. Two transient bands with origins at 1280 and 1076 cm(-1) were observed and are assigned to the SO2-antisymmetric and SO2-symmetric stretching modes of CH3SO2, respectively. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational, and rotational parameters of CH3SO2 and CH3OSO. Based on predicted rotational parameters, the simulated absorption band of the SO2-antisymmetric stretching mode that is dominated by the b-type rotational structure agrees satisfactorily with experimental results. In addition, a band near 1159 cm(-1) observed at a later period is tentatively attributed to CH3SO2I. The reaction kinetics of CH3 + SO2 --> CH3SO2 and CH3SO2 + I --> CH3SO2I based on the rise and decay of absorption bands of CH3SO2 and CH3SO2I agree satisfactorily with previous reports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.