Abstract

A theoretical formulation of the electromagnetic response in graphene ribbons on dielectric substrate is derived in the framework of the ab initio method. The formulation is applied to calculate the electromagnetic energy absorption in an array of potassium-doped graphene nanoribbons (KC-NR) deposited on a dielectric AlO substrate. It is demonstrated that the replacement of the flat KC by an array of KC-NR transforms the Drude tail in the absorption spectra into a series of infrared-active Dirac plasmon resonances. It is also shown that the series of Dirac plasmon resonances, when unfolded across the extended Brillouin zones, resembles the Dirac plasmon. The Dirac plasmon resonances’ band structure, within the first Brillouin zone, is calculated. Finally, an excellent agreement between the theoretical absorption and recent experimental results for differential transmission through graphene on an SiO/Si surface is presented. The theoretically predicted micrometer graphene nanoribbons intercalation compound (GNRIC) in a stage-I-like KC is confirmed to be synthesized for Dirac plasmon resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.