Abstract
Option pricing models are tools for pricing and hedging derivatives. Good models are complex and the econometrician faces many design decisions when bringing them to the data. I show that strategically constructed low-dimensional filter designs outperform those that try to use all the available option data. I construct Unscented Kalman Filters around option portfolios that aggregate option data, and track changes in risk-neutral volatility and skewness. These low-dimensional filters perform equivalently to or better than standard approaches that treat full option panels. The performance advantage is greatest in empirically relevant settings: in models with strongly skewed jump components that are not driven by Brownian volatility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have