Abstract
Experience or training can substantially improve perceptual performance through perceptual learning, and the extent and rate of these improvements may be affected by feedback. In this paper, we first developed a neural network model based on the integrated reweighting theory (Dosher et al., 2013) to account for perceptual learning and performance in n-alternative identification tasks and the dependence of learning on different forms of feedback. We then report an experiment comparing the effectiveness of response feedback (RF) versus accuracy feedback (AF) or no feedback (NF) (full versus partial versus no supervision) in learning a challenging eight-alternative visual orientation identification (8AFC) task. Although learning sometimes occurred in the absence of feedback (NF), RF had a clear advantage above AF or NF in this task. Using hybrid supervision learning rules, a new n-alternative identification integrated reweighting theory (I-IRT) explained both the differences in learning curves given different feedback and the dynamic changes in identification confusion data. This study shows that training with more informational feedback (RF) is more effective, though not necessary, in these challenging n-alternative tasks, a result that has implications for developing training paradigms in realistic tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.