Abstract

Advanced materials with high performance and distinctive function are one of the main driving forces for the development of human society. The selection of appropriate materials and adequately utilizing their features to apply them in a specific area rationally are of great significance but remain challenging. Herein, an aggregation-induced emission (AIE)-active nanocomposite (NC) hydrogel is developed by introducing a pH-responsive AIE luminogen (AIEgen) into a Laponite XLS/polyacrylamide-based NC hydrogel (Laponite is a trademark of the company BYK Additives Ltd.). The AIEgen can protonate to interact with the negatively charged clay through the electrostatic interaction, which results in a drastic fluorescence enhancement due to the restriction of intramolecular motion by the rigid clay to the protonated AIEgen. This behavior facilitates the input of fluorescent information with a high contrast ratio in the hydrogel by acid stimulation. Moreover, by utilizing the excellent resilience of the hydrogel, hierarchically inputting and displaying the information in the original and stretched states of the hydrogel film is realized, which achieves information-storage expansion and dual-encryption via switching between stretching and restoring the film. This work showcases fully and synergistically utilizing the superiorities of various advanced materials to achieve superior applications and should guide the future development of advanced materials in emerging areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.