Abstract

Deep learning models have been widely used in many supervised learning applications. However, these models suffer from overfitting due to various types of uncertainty with deteriorating performance when facing data biases, class imbalance, or noise propagation. The Information-Set Deep learning (ISDL) architectures with four variants are developed by integrating information set theory and deep learning principles to address the critical problem of the absence of robust deep learning models. There is a description of the ISDL architectures, learning algorithms, and analytic workflows. The performance of the ISDL models and standard architectures is evaluated using a noise-corrupted benchmark dataset. The experimental results show that the ISDL models can efficiently handle noise-dominated uncertainty and outperform peer architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.